a2 United States Patent

Guo et al.

US009135056B2

US 9,135,056 B2
*Sep. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

AUTOMATED, CONTROLLED
DISTRIBUTION AND EXECUTION OF
COMMANDS AND SCRIPTS

Inventors: Shang Q. Guo, Cortlandt Manor, NY
(US); Ramesh S. Palakodeti, Crystal
Lake, IL, (US); Rajeev Puri,
Huntersville, NC (US); Daniela Rosu,
Ossining, NY (US); Cashchakanithara
Venugopal, Naperville, IL (US);
Frederick Y. Wu, Greenwich, CT (US);
Sai Zeng, Yorktown Heights, NY (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Assignee:

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 392 days.

Notice:

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/592,067

Filed: Aug. 22,2012

Prior Publication Data
US 2014/0053073 Al Feb. 20, 2014
Related U.S. Application Data

Continuation of application No. 13/589,585, filed on
Aug. 20, 2012.

Int. Cl1.

GO6F 9/46 (2006.01)

GO6F 9/48 (2006.01)

HO4L 12/24 (2006.01)

U.S. CL

CPC GO6F 9/468 (2013.01); GOGF 9/4843

(2013.01); HO4L 41/22 (2013.01); HO4L 41/28
(2013.01)

(58) Field of Classification Search
CPC GOG6F 9/468; HO4L 41/28; HO4L 41/22
USPC 726/27
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

6,449,636 Bl 9/2002 Kredo et al.
6,516,337 B1* 2/2003 Trippetal.cccoenee. 709/202
(Continued)
OTHER PUBLICATIONS

Neto et al., MARTe: A Multiplatform Real-Time Framework, IEEE
Transactions on Nuclear Science, Apr. 2010, vol. 57, No. 2, pp.
479-486.*

(Continued)

Primary Examiner — Kenneth Chang
(74) Attorney, Agent, or Firm — Scully, Scott, Murphy &
Presser, P.C.; Louis J. Percello, Esq.

(57) ABSTRACT

Distributed execution of commands and scripts may comprise
a script execution manager having access to a library of
executable objects comprising at least one or more of com-
mands or scripts or combination of commands and scripts. A
script execution console may be operable to present a graphi-
cal user interface for selecting an executable object from the
library to execute and for selecting one or more managed
computers, on which to execute the selected executable
object. The script execution console may be further operable
to present a dynamically updated collation of results from
execution of the selected executable object. One or more
script execution agents may be operable to run on the selected
respective one or more managed computers and further oper-
able to communicate with the script execution manager.

22 Claims, 8 Drawing Sheets

|LUSER LOGS IN TO CONSOLE AND ENTERS TICKET ID |\202
i 2

CONSOLE CONNECTS TQ SCRIPT EXECUTION SERVER, WHICH CONNECTS TO TICKETING SYSTEM, WHICH RETURNS
DETALLS OF SERVICE REQUEST. SCRIPT EXECUTION MANAGER LOOKS UP USER ROLE ASSOCIATED WITH
SERVICE REQUEST TYPE AND PLATFORM ASSOCIATED WITH TARGET COMPUTERS

204

PRIVILEGE MANAGER RETRIEVES COMMAND WHITE LIST FOR USER'S ROLE AND SELECTED PLATFORM (IF ANY) 2%

USER ENTERS COMMANDS OR SCRIPT NAME IN GUI I\ 208

[CONSOLE SHOWS ALERT|
WARNING THAT
COM

ENGINE TRANSLATES COMMANDS TO
PLATFORM-SPECIFIC COMMANDS IF NEEDED

IMANDS ARE
NOTALLOWED

SERVER SENDS COMMANDS|
TO TARGETED MANAGED

20~
SERVER AND EXECUTES IT

TARGET DOWNI SCRIPT
DOWNLOAD SERVER AND EXECUTES IT

20

LOADS SCRIPT FROM TARGET EXECUTES

THE SCRIPT

Y
2% -] OUTPUT OF COMMAND OR SCRIPT SAVED IN LOCAL LOG FILE ON EACH TARGETED MANAGED SERVER |
¥
I 1 ENGINE TRANSLATES RESULTS IF NEEDED |
y

2% A LOGS OR OTHER RESULTS COLLATED IN CONSOLE FOR PRESENTATION TO USER

US 9,135,056 B2

Page 2
(56) References Cited 2005/0138623 Al* 6/2005 Freskocccovvvenrennen. 718/102
2005/0234708 Al 10/2005 Mechan et al.
U.S. PATENT DOCUMENTS 2006/0095971 Al* 52006 Costea etal. ..ooorovrrveve.. 726/26
2007/0116241 Al* 5/2007 Flockenetal. ... 379/265.05
7308464 B2 12/2007 Nowitz et al. 2007/0226259 Al* 9/2007 Kacinetal. 707/104.1
7818427 B2 10/2010 Kacin et al. 2007/0226736 Al* 9/2007 Johnson et al. .. 718/1
7827266 B2 11/2010 Gupta 2008/0127175 Al* 52008 Naranjo etal. 717/174
2002/0100036 Al* 7/2002 Moshir etal. 717/173 2010/0281294 Al 11/2010 Soulet et al.
2003/0037177 Al* 2/2003 Sutton et al. . 709/316
2003/0163338 Al* 82003 Davisetal. 705/1 OTHER PUBLICATIONS
2003/0226033 Al* 12/2003 Zindaetal. .. 713/201 . . .
2003/0233547 AL* 12/2003 Gl;stgrfe?al. o T713/168 Office Action dated Nov. 7, 2014 received in U.S. Appl. No.
2004/0111499 Al* 6/2004 Dobrowski et al. 709/222 13/589,585.
2005/0027687 Al 2/2005 Nowitz et al.
2005/0027841 Al* 2/2005 Rolfeooovevivviieeninnnn. 709/223 * cited by examiner

US 9,135,056 B2

Sheet 1 of 8

Sep. 15, 2015

U.S. Patent

} Ol

INFOV
NOILNO3X3
ANVAIWOO/LdIHOS

™7l

A

(SITANIS QIOYNYIN

01

INIONT NOLLYTSNYHL

rel

ANYWWOD/LIYIS

™20

S1dI40S
INFWIOVYNYIN H3AYES

-9

Y3AY3S QYOINMOA

0l
) 4 \

8l
N

0zl
N

Y3FOYNYIN NOILNOIXT

™ ONYAY3ANAA
ANYWINOO/LdINOS

YIOVNYI
ERERIt g

18
TOYINOD

A

H3IAY3S NOILNJIXT ANV NOILNEIILSIA LdIMIS

S1S3N03Y FONVHO

A

91l

W3LSAS LS3NDFY FONVHO

Y

J10SNOD
NOILNJ3X3
ANYWAOD/LdIMOS

001

NOILYLSHHOM HOLvHLSININGY

/

pLl

(

801

0l

US 9,135,056 B2

Sheet 2 of 8

Sep. 15, 2015

U.S. Patent

| 435N OL NOLLYINI534d 404 10SNOD NI GRLYTI00 SLINS34 3HLO 0 5907 L% ¢ Ol
3
[G Asins saviwel e 7%
i
(30435 Q0WNYI C3LI08VL HOV3 NO 13 907 T¥O0TNI GAYS L1405 80 NYAWO9 40 1ndno -~
A
|
/AN T E T ISIO3A VR QOO0 | | {Sanoaa i amES | o7y
S3U03X3 1304w O3 LdhioS STYOTNMOG LIONYL S0 TOD SN SIS
; YA QIO ION
o I 24 SONVHINGD
(3033N 41 SONVIIO? D1193dS-WHOALYd LyHL ONINHYM
ST STHOLYI INLINOIS LI Ldi¥ds > 0L SANYWNOD SLYISNYAL INION3 Ewwgommﬂ%zoo
7 I
_ oz [933 CIOMVA 72
w7 Eomfazoz_mz_%mmxamoo - L
U AN IS ER T 0 ©m 215 G3TIOHLNOD OL SNIGH00Y
13941 SL03T35 433N \ S Q3iAOTIY SONVINOD 34Y N
1 _ P
= az_%w@/om&%o%mEzS_w_ - il

%02~J 109 N 9N LaIE0S HO SONVANOD SEaING ¥35N |
1

@om/_c,z,q“__v WH041Y1d 031937135 ANY 3704 S.435N 404 LS ILIHM ANYWWOD SFATILIY HFOVNVI m_wm_.__>_mn__

1

700~

SY3LNdNOJ 13941 HLIM 03LVID0SSY WHOALY1d ANV 3dAL LSIN0TY FDIAY3S
HLIM 3LYID0SSY 3104 435N dN SYO0T 43OVYNYIN NOILNOIXS 1di¥0S '1S3ND3IY FOIN3S 40 STIvLAA
SNYNLIY HOIHM WILSAS ONILIMOIL OL SLOINNOD HOIHM HIAYIS NOILNOIX3 LdI¥OS OL SLOINNOD 10SNOD

1
0~ 01 [3%0IL SY3IN3 QNY Z10SNOD OL NI S90T 4361 |

US 9,135,056 B2

Sheet 3 of 8

Sep. 15, 2015

U.S. Patent

B

S1INS3Y NOILNO3X3 431931102

(PYUIG/IST]) :panss] pUBWLIO)

H3SNS-WHEE-OSA -eWeujsoy
Vonurwajshsin” weyshs=pxejuoa (jool)o=pib (joor)g=pin

¢10¢ 158 0:8)-6) 8 unr Ny :psnsst swij
(Py/UIg/Isny) :panss| pueLILIOY)

Gjlji-eps-osh -allieljsop

(Uupeoou) LS (jeeum)o L (Hs1p)a (Lupe)y'(shs)e ‘(uowsep)z (uig) | ‘Goos)o=sdnaib (1oot)o=pib (ooa)o=pin
2407 L3 6E:6G:€) 87 Unp Ny penss] ewi]
(pyuic/isny) :penss| puewwo?)

y0¢

- 206

Ovm\ uuam“uv.H—H_m_u.umwquu_m.uOuNuNu.u.muUu_uuv_uOuQu.wuoHu”Mm.._umuguw@uL
[puewwooumy | | juiodpusyoay) | | Isjuojoeoey) |
D] [B < B
L1sos-eps-osn [0}osns-eps-osa | | 2
SINIOdON3 Q3123138 Goui-8ps-0sA _ || SE[S-BPS-08A | Sliejog UNS 53
F10UL-EpS-08A OJUI-EpS-03A Y=
Wwoo dioo gpnojo gz-Bo-yod-ool Clou.-Eps-0SA 350S XU
¥og[enyiA-jsand ploUL-BpS-08A e poy NG
1 ISNS-1HgY-0SA [oo diod gpnojo () g-Dpi-yod-oos B00C SHOPUMER _|
Pe 013SNS-vA84-0SA YOg[enpiA-jsanD £00 SMOPUIM 25 N
80 :sjulodpu3 LHASNS-¥Ed-0SA dX SMOPUIMEL
[sjuiodpua papspes 18] | / 013SNS-PIGY-OSA S0/q
[GTIH-VIgE-0SA auiey Jsjnduiog) Ag =9
[voosies wiodpus jesey | | 90¢ FIIHEWE-0SA | | = saluadold Ag
WH041Y1d 03L0373S 40 SINIOJANT ‘Su00pUR 18l8S
TST] PUBIWIO,) STepIen | ANITANYIWAOD C_E_e_%l\
— — “PUBWIIO) 81U
1€ 42 slepSUngo XYo XUMe XUjo SMOPUM o SO 198RS
SANYWWOO 3LYdNvA

US 9,135,056 B2

Sheet 4 of 8

Sep. 15, 2015

U.S. Patent

[puewwoouny | [juodpuayeey) | [ISIUORoEYRY) |
<| [>] <| [> >A_ [>]
SUiej0g UNS 53
38N8 x:vm___/N_M
24-8MZ-Y0S-0SA 1BH poy XnuI =g
Cd-ENMC-YaS-0SA 8007 SMOPUIM E3
CU-BMC-YMEY-0SA £00 SMOPUIM E3
CU-EMC-YMEY-OSA dX SMOpUIM g
[SjuodpUs pejosfes Josjo) | 780409 S0 /g
L0Qdad0 awep Jendwon Ag £
< [UoRosjes odpua 58y | | y <) soliadold Ag
00p 707 'sjulodpus 198[8g
TSTTPUEWI0) SYEpTen| ——suijdn|
Now.\ 'PUBWIWIO0 JalUg

US 9,135,056 B2

Sheet 5 of 8

Sep. 15, 2015

U.S. Patent

¢ ol

[puewwoouny | [juodpuexosyd | [ISTUOROE R |

< B

>

[>]

>
>

woa'dioa'gpnoja’0Lz-Bpi-yod-00l
xog[eniiA-isanf
LASNS-YHEY-0SA

018SNS-2ps-0sA
11,815-BpS-08A

= 708
) sliejog UnSE

013SNS-Y1EY-0SA

G13HYYIGE-0SA
:sjuiodpu3

[sjuiodpus pejosjes 10g]109 |

| M0 |

! XIVEZ
3SNS XnurEg
JeH oy XnuIEg

- Uoijdo ouy Jeaq o} pamoljejou si sosnyuigy, \j/ 800¢ SMOPUIM EB

£00¢ SMOpUIM R

dX SMOPUIM £

abedqam woy abessap S0 g

S 1JdT T V/IUU iy

[uonosjes juiodpue jesey | |

I

Y13HYYHEY-0SA

owep Jendwon Ag B3
2

saladold Ag

‘sjulodpus 198RS

90—

Jm] 1>

\

<l

W- ‘- '~ - 1da0xa Jasnyuiqy

W- ‘- ‘- Y- 1d80xa Jasnjuiq s/

I- ‘W- 1da0xa jnoJsoeIuIq SAISN/

I- ‘W~ 1d80x8 gjnousoeuIg/

B0IABP-- 'I- ‘DLswnu-- ‘U~ ‘Kejdsip-- ‘e- Ajuo dieguiq s/
$9|li-AIeulq-- palayng-aull-- ‘palayng-aul- ‘98Inoal

STTPUBUIIO] SPepTen |

-~ tesnjug]

Sliejog Ung o

720G~ -PUBWUI0) J8jU3
XYo Xme Xujo SMOPUio S0 19919S

US 9,135,056 B2

Sheet 6 of 8

Sep. 15, 2015

U.S. Patent

¢l9

\

9 9l
019

\

pUBWIWOY)

sishjeuy
SUIBN Jo[XI4
jduag

sishjeuy
SUIBN Jo[XI4
LN

Y

809~

SAISNAUIS|
uonduasaq
SO

oweN

adA| uonoy

u

Y

oloy
/

909

SN Jos()
QI Junoagy
Jojelado

109

u

|

SUIBN UN000Y
Q17 1Un0ooy
JUN029Y

209

US 9,135,056 B2

Sheet 7 of 8

Sep. 15, 2015

U.S. Patent

L 9l

(ANY 41) Wd041¥1d G3103713S ANY 3104 S43SN
d04 1SI73LIHM ANVIWWNOJ S3AIELTH HFOYNVIN 3OTTIAINA

y

\

JNILY 1V WH04LY1d INO 13313S OL HOLYH3d0 S1dWOdd ¥O F¥N1Y3 NOILYISNYHL S3I1ddY
43HLI3 ANY ¥3LNINOJ L39VL HIVI 40 NHO41Y1d dn SMOOT 3OYNYIN NOILNO3XS 1dIMS

y

\

4014340 01 S3104 3S3IHL
J0IAY3S HLIM d31VID0SSY S3104 dN

SINVHO ANV 3dAL LSINOY
SM00T ¥39YNVIN NOILNI3XS LdI¥S

y

\

1S3N03Y FOIAY3S 40 STIVLIA SNUNLIY HOIHM ‘WILSAS ONILINOIL
OL SLOINNOD HOIHM H39YNVI NOILNOIXT LdI¥DOS OL SLOINNOD F10SNOD

y

\

QI LIMOIL SHALN ONY F10SNOJ OL NI §90743SN

US 9,135,056 B2

Sheet 8 of 8

Sep. 15, 2015

U.S. Patent

(4350 OLNOLLYLNGS26d 404 TI0SNOO NI GaLVTI00 SISz el s s ™
i
["S3A3S GI9VNVI G31308VL FOVANO T3 907 V00T NI G 1adas 50 GNA0D 20 Lndino |~
A
| |
- 11S31003¥3 ONY 11S31003¥3 ONY
| 43A43S QYOTNNIOT WOM4 SINIOJQN3 G31398VL 0L
LdI¥0S SOYOTNMOQ L3941 ONYANOD SONZS 343
1 by
AN SL394YL OL SINIS 11 S3LNOINE ONY HINSTS 88
‘SUILINVYYG STZNOLSNOMISN | | vOINMOT WO Ldiwas %8
I SOYOTNINOG L39¥YL QIMOTIV 1N S
078 I ONVAINOD JYHL ONINSYM
~ &z_o%zmm@%msmdm%m: | S - IO LHL ONINKY
SINOUN3 L3081 ¥
yz8 SLINV430 HLIM SGEREREN REIESR 2N [
~ / 718
S¥3L3NVHYd SINISTAd TIOSNOD \ oo
! 0z8 ¢3S UK HL NI ONVANOD FHLST>
<314 L3NV Y INH LS 3L 5300 > %
/ _ ~ g
ol = az_%w@/om&ﬁo ISNFHLNO LIS
808
08~J1n9 NI 0N LdI0S 50 ONVWIOO v SH3INT 4331 |

208~

3704 S43SN ¥O4 1SIT3LIHM ANYIWINOD
SIANHLIS HIOVNYIN 39T NAM "F10Y GINDISSY-THd S:43SN dN SHOOT HOIHM
YIAYIS NOILNDIXT LdIIOS OL SLOFNNOD FT0SNOD "T10SNOJ OL NI'SD0T 43N

US 9,135,056 B2

1

AUTOMATED, CONTROLLED
DISTRIBUTION AND EXECUTION OF
COMMANDS AND SCRIPTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/589,585 filed on Aug. 20, 2012, the entire
contents of which are incorporated herein by reference.

FIELD

The present application relates generally to computer sys-
tems, and more particularly to administering and managing
computers.

BACKGROUND

Large data centers need large numbers of system adminis-
trators to manage servers for the customers they serve. When
managing large numbers of servers, a system administrator
(SA) frequently needs to execute a command or pre-existing
script on a large number of servers for any of a number of
purposes, such as viewing diagnostic information or setting a
configuration parameter. For an SA to log in to each server,
copy a script to the server, execute it, and copy the results back
to his workstation is a very tedious, time-consuming, and
error-prone job.

Server management frameworks have been developed to
ease the distribution and execution of commands and scripts,
but they lack access controls or a unified user interface for
dispatching commands and collecting results.

BRIEF SUMMARY

A method of distributed execution of commands and
scripts, in one aspect, may comprise receiving a selected
executable object via a graphical user interface from a user.
The method may further comprise receiving via the graphical
user interface, a selected one or more managed computers on
which to execute the selected executable object. The method
may also comprise determining whether the user is autho-
rized to execute the selected executable object on the selected
one or more managed computers. The method may further
comprise, in response to determining that the user is autho-
rized to execute the selected executable object, communicat-
ing to the selected one or more managed computers to execute
the executable object and dynamically collating results from
the execution of the executable object on all of the selected
one or more managed computers. The method may also com-
prise, in response to determining that the user is not autho-
rized to execute the selected executable object, presenting an
alert to the user via the graphical user interface.

A method of distributed execution of commands and
scripts, in another aspect, may comprise receiving a selected
executable object via a graphical user interface from a user.
The method may also comprise receiving via the graphical
user interface, a selected one or more managed computers on
which to execute the selected executable object. The method
may further comprise determining whether the user is autho-
rized to execute the selected executable object on the selected
one or more managed computers. The method may also com-
prise, in response to determining that the user is authorized to
execute the selected executable object, determining whether
the selected executable object has a parameter file and in
response to determining that the selected executable object

10

15

20

25

30

35

40

45

50

55

60

65

2

has a parameter file, allowing a user to customize the param-
eter file, and communicating to the selected one or more
managed computers to execute the executable object with the
customized parameter file, and dynamically collating results
from the execution of the executable object on all of the
selected one or more managed computers. The method may
further comprise, in response to determining that the user is
not authorized to execute the selected executable object, pre-
senting an alert to the user via the graphical user interface.

A system of distributed execution of commands and
scripts, in one aspect, may comprise a script execution man-
ager having access to a library of executable objects compris-
ing at least one or more of commands or scripts or combina-
tion of commands and scripts. A script execution console may
be operable to present a graphical user interface for selecting
an executable object from the library to execute and for select-
ing one or more managed computers, on which to execute the
selected executable object. The script execution console may
be further operable to present a dynamically updated colla-
tion of results from execution of the selected executable
object. One or more script execution agents may be operable
to run on the selected respective one or more managed com-
puters and further operable to communicate with the script
execution manager.

A computer readable storage medium storing a program of
instructions executable by a machine to perform one or more
methods described herein also may be provided.

Further features as well as the structure and operation of
various embodiments are described in detail below with ref-
erence to the accompanying drawings. In the drawings, like
reference numbers indicate identical or functionally similar
elements.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 illustrates system components of the present disclo-
sure in one embodiment.

FIG. 2 is a flow diagram illustrating a method of controlled
distribution and execution of commands in one embodiment
of the present disclosure.

FIG. 3 is an example screen shot of a graphical user inter-
face that shows command line field in one embodiment of the
present disclosure.

FIG. 4 is an example screen shot of a graphical user inter-
face that shows translation of commands to equivalent com-
mands for platforms in one embodiment of the present dis-
closure.

FIG. 5 is an example screen shot of a graphical user inter-
face that shows validation of commands against a list of
allowed or forbidden commands in one embodiment of the
present disclosure.

FIG. 6 is a diagram showing role-specific control lists for
controlling authorized users in executing commands in one
embodiment of the present disclosure.

FIG. 7 is a flow diagram illustrating assigning a role based
on service request.

FIG. 8 is a flow diagram illustrating a method of controlled
distribution and execution of commands in another embodi-
ment of the present disclosure.

DETAILED DESCRIPTION

Automating and controlling of the distribution and execu-
tion of commands and scripts on multiple computer systems
are presented. In one embodiment of the present disclosure, a
graphical user interface is provided that includes a command

US 9,135,056 B2

3

line interface to multiple servers and present collated results
from all servers. In another embodiment of the present dis-
closure, a platform-independent command line interface to
multiple servers of different platforms with automatic trans-
lation of commands to platform-specific commands may be
provided. Yet in another embodiment of the present disclo-
sure, validation against white list may be provided, e.g., to
prevent execution of potentially damaging commands/
scripts. Still yet, role-specific and account-specific white lists
may be provided, e.g., to restrict allowed commands/scripts
to authorized users. Further, a temporary role may be auto-
matically assigned to a user working on a service request
granting privileges to execute role-specific white listed com-
mands/scripts, based on information specified in the service
request.

In one aspect, a graphical user interface of the present
disclosure may include a command line field, displays end-
points applicable to the selected platform, let a user select
endpoints for command execution, validate commands
allowed to be executed on endpoints, collect and display
execution results from multiple endpoints in one screen, and/
or enable a user to save execution results to a single file on
local workstation.

In the present disclosure, the term “script” is meant to
include any executable program, e.g., a native operating sys-
tem (OS) script, shell script, or binary executable program or
the like. The term “command” is meant to include any native
OS or shell command or the like. The term “executable
object” refers to any one or more of script or command or any
other entity that can be executed or run on a processor or the
like.

FIG. 1 illustrates system components of the present disclo-
sure in one embodiment. The components shown in the figure
may execute on hardware processors or computers. A script
distribution and execution server 102 comprises a script/com-
mand delivery and execution manager (also referred to as a
script execution manager) 104. The script execution manager
104 receives requests from a script/command execution con-
sole (also referred to as a script execution console) 106 run-
ning on a computer, for example, a system administrator’s
workstation 108. A script execution manager 104 may con-
tain or have access to a library of executable objects, for
example, one or more of commands or scripts or combination
of commands and scripts. A script execution console 106
presents a graphical user interface for selecting an executable
object (e.g., a command or script) from the library to execute
and for selecting one or more managed computers 110, on
which to execute the selected executable object. One or more
script execution agents 112 may run on respective one or
more managed computers 110 and communicate with the
script execution manager 104. The script execution console
106 may further present a dynamically updated collation of
results from execution of the selected executable object.

In one embodiment, the SA is notified of a service request,
and enters the service request ticket ID into the script execu-
tion manager 104. The script execution manager queries the
service request system 114 to retrieve details of the service
request 116. In this scenario, the work to be done by the SA is
prompted by a service request. A service request is a collec-
tion of information about a task that the SA is to perform on
one or more computers. The service request can be originated
by any of a number of persons or systems, e.g., the customer
or another System Administrator, and typically has to be
approved by the customer and possibly an account focal
point. There can be standard types of service requests, for
example, to delete a user ID. An example of a service request
to remove a user ID would specify the Account, the User 1D,

15

30

35

40

45

4

and the computers from which that ID should be deleted. A
standard service request type may be mapped to one or more
SA roles, each of which may be mapped to one or more
commands/scripts. For such a service request type, the sys-
tem could temporarily grant the mapped role(s) to an SA for
the purpose of executing the service request. Granting this
role would enable the SA to execute only the commands/
scripts mapped to that role. In another embodiment, the sys-
tem could temporarily grant the SA permission to execute a
set of mapped commands/scripts for the purpose of perform-
ing the service request (without granting a role). If the service
request system 114 is not integrated with the script/command
execution manager, then the SA would read the service
request details, such as the account, service request type, the
list of computers, and user, for example, directly from the
service request system and enter them into the script execu-
tion console. The script/command execution manager would
then look up the roles for which the SA user is to be authorized
based on the service request type. In another embodiment, the
script/command execution manager would look up the set of
scripts/commands mapped to the service request type.

In one embodiment, the script execution manager 104 may
consult with a privilege manager component 118, which finds
a control list 120 that corresponds to the account and roles.
For instance, the script execution console 106 via the script
execution manager 104 may validate the selected executable
object against a white list of allowed executable objects or a
black list of disallowed executable objects, shown as control
list 120. The script execution manager 104 also may commu-
nicate with the privilege manager 118 to validate the selected
executable object against a list of executable objects specific
to a role of a user, also shown as a control list 120.

In one embodiment, the list of executable objects compris-
ing the control list for each service request type may be
automatically generated by analyzing prior service requests
of'said each service type and collecting the executable objects
used to complete said prior service requests.

In one embodiment, the script execution manager 104 may
use a distributed server management framework to pass the
name or identifier of the selected executable object (e.g.,
command or script) or the like to the selected manager server
(targeted server endpoints).

In one embodiment, the script execution manager 104 may
invoke a script/command translation engine 122, if a transla-
tion of the command to the platform of a targeted server is
required. For instance, the script execution console 106 via
the script execution manager 104 may automatically map the
selected executable object into a platform specific executable
object compatible or appropriate to execute on the selected
one or more managed computers.

A script execution agent 112 running on each targeted
endpoint or selected managed computer 110 executes the
selected executable object (e.g., the command or script) on
the selected managed computer 112. In case the executable
object does not exist on the selected managed computer 110,
for example if a script does not exist, the executable object
may be downloaded from a download server 124, which holds
a repository of server management executable objects 126,
e.g., scripts.

In one embodiment, the script execution agent (e.g., 112)
may check for existence of the selected executable object on
the selected one or more managed computers (e.g., 110), and
in response to determining that the selected executable object
exists, the script execution agent 112 may compare a digital
signature of the executable object with an approved digital
signature associated with the executable object. The approved
digital signature, for instance, may be the digital signature of

US 9,135,056 B2

5

the previously approved executable object having the same
name or other identifier. In response to determining that the
digital signature matches with the approved digital signature,
the script execution agent 112 may execute the selected
executable object. In response to determining that the digital
signature does not match with the approved digital signature,
the script execution agent 112 may download a version of the
executable object from an approved server (e.g., 124) and
execute the downloaded version of the executable object.

Following execution of the script/command on each end-
point, e.g., the selected executable object on the selected one
or more managed computers, the result of the execution may
be returned through the distributed server management
framework to the script execution console 106, for instance,
for presentation to the SA user. The script execution console
106 may aggregate or collate the results from all the target
server endpoints, e.g., the selected one or more managed
computers, and provide the user a choice of ways in which to
view the consolidated results.

FIG. 2 is a flow diagram illustrating a method of controlled
distribution and execution of commands in one embodiment
of the present disclosure. At 202, a user logs into the script
execution console and enters the ticket ID. At 204, the console
connects to the script execution server, which optionally que-
ries the service request system (ticketing system), passing in
the ticket ID and returning the account ID, user role(s), and
target endpoints with platform type. If there is no integration
with the ticketing system, then the command request includes
the account ID and user, and the script execution server looks
up the user’s role(s) from the privilege manager. If there are
multiple platforms, a user may select one platform at a time,
or use a translation feature, if available. The translation fea-
ture translates a selected script (or executable object) into an
object that is compatible to run on a different platform.

The script execution server may invoke the privilege man-
ager with the account and role information. At 206, the privi-
lege manager looks up the control list (black or white) for the
platform corresponding to each target server endpoint, aggre-
gating the lists from multiple roles and restricting based on
account.

At 208, the user enters the name of an executable object
(e.g., a command or script) in the user interface. The script
execution server checks the user-selected executable object
(e.g., a command or script) against the list returned by the
privilege manager. For example, it is determined at 210
whether the selected executable object is on the list of
approved scripts, and if not at 212 whether the selected
executable object is an allowed command according to the
control list. If it is a disallowed command, the console shows
an alert at 214. On the other hand, if the command is an
allowed command according to the control list, at 216, the
user may select one or more target managed servers (one or
more managed computers).

At 218, the command may be translated to platform-spe-
cific command of the selected one or more managed comput-
ers, so that the command (or a compatible form of the com-
mand) can be executed on the selected one or more managed
computers. For example, if command translation (optional) is
used, then the collection of targeted servers could be of dif-
ferent OS platforms, and the script/command translation
engine may translate the command to the appropriate plat-
form for each target server. Command translation may not be
used in all cases for any of the following reasons: it is a feature
that was not purchased, it does not accurately translate to all
platforms, or the selected computers are all of the same plat-
form. At 220, the command is sent to the selected one or more
managed computers, and the logic of the method proceeds to

35

40

45

50

6

232. In one embodiment of the present disclosure, commands
are assumed to exist on each target server, e.g., as built into the
operating system or native shell. “Sending” the command
here sends the name of the command (possibly including
parameters) to the agent on the target computer, and instruct-
ing the agent to execute the command. For example, the
command is sent to the script/command execution agent on
each endpoint, and executed.

At 210, if it is determined that the selected executable
object is on a list of approved executable objects (e.g., a list of
approved scripts), at 222, the user may select one or more
managed computers. The following elements 224, 226, 228
and 230 may be performed for each of the selected managed
computers. At 224, it is determined whether the executable
object (e.g., a script) exists on the selected managed com-
puter. If the executable object does not exist on the selected
managed computers, the logic of the method proceeds to 230.
If the executable object exists on the selected managed com-
puter, at 226, it is determined whether the digital signature of
the executable object existing on the selected managed com-
puter matches a digital signature of an approved version of the
executable object. If so, the executable object is executed on
the selected managed computer. If the digital signature of the
executable object existing on the selected managed computer
does not match a digital signature of an approved version of
the executable object, the logic proceeds to 230. At 230, e.g.,
if the executable object did not exist on the selected computer
or if the existing executable object on the selected computer
did not have a matching digital signal of an approved one, the
selected executable object is downloaded, e.g., from a source
that has the approved version, e.g., a server that maintains
approved versions.

For example, if the user has selected a script that is in the
allowed list, then the agent running on each endpoint checks
to see whether the script already has been previously down-
loaded to the endpoint. If not, it downloads it from the appro-
priate download server and executes it. If the script already
exists on the endpoint, the agent computes its digital signature
and compares it with the digital signature passed in with the
request to execute the script. If they do not match, then there
is the possibility that the script on the endpoint is an old
version or that it has been modified without authorization, in
which case the agent downloads the official latest version
from the server. If the digital signatures match, then the agent
executes the script.

At 232, output of the executable object (e.g., command or
script) is redirected to a log file on each endpoint, and copied
to the script distribution and execution server by the frame-
work. At 234, any platform-dependent translation of results
may be performed by a translation engine or the like. At 236,
the results are presented to the user, e.g., in the script/com-
mand execution console in an aggregated display.

FIG. 3 is an example screen shot of a graphical user inter-
face that shows command line field in one embodiment of the
present disclosure. The graphical user interface may include
a window or the like display with a field 302 for entering a
name or identifier of an executable object such as a command
or script. The graphical user interface may also comprise a
display of endpoint platforms 304, endpoints of selected plat-
form 306, selected endpoints 308 and collected execution
results 310. For instance, a user may enter via the graphical
user interface command line field 302, an executable object.
The user may also select a desired platform via the selection
menu or another mechanism as shown at 304. The graphical
user interface may display or otherwise present the endpoints
of the selected platform, for example as shown at 306. The
user may select one or more desired endpoints (also referred

US 9,135,056 B2

7

to as managed computers) via the panel at 306. The selected
endpoints are shown at 308, e.g., via another display panel or
the like. The results of the command executed on the selected
endpoints, e.g., shown at 308, are displayed or presented at
310. The graphical user interface may also include a button or
the like for invoking validation of the entered executable
object, e.g., as shown at 312. A command list button or the like
element 314 may invoke a presentation or display of a com-
mand list.

FIG. 4 is an example screen shot of a graphical interface
that shows translation of commands to equivalent commands
for other platforms in one embodiment of the present disclo-
sure. For instance, a user may enter command in native shell
language of one platform and select endpoints of multiple
platforms. The methodology of the present disclosure in one
embodiment retrieves equivalent commands in shell lan-
guages of other platforms and passes a command of appro-
priate shell language to each endpoint. For instance, a user
may enter ‘uptime’ Linux™ operating system command as
shown at 402. The user selects Linux™ and Windows™
target servers from 404. At 406, the servers or computers
running those platforms are presented. The methodology of
the present disclosure in one embodiment may automatically
translate the “uptime’ command into an equivalent function in
Windows™ operating system, e.g., ‘net stats srv’. According
to the methodology of the present disclosure, “‘uptime’ com-
mand is executed on Linux and ‘net stats srv’ command is
executed on Windows™ servers.

FIG. 5 is an example screen shot of a graphical interface
that shows validation of commands against a list of allowed or
forbidden commands in one embodiment of the present dis-
closure. In one embodiment of the present disclosure, a white
list of allowed commands, e.g., including allowed options
and/or a black list of forbidden commands may be defined. An
entered executable object (e.g., command) 502 may be
parsed, e.g., via string or text parsing (e.g., including concat-
enated or piped commands). Each command may be vali-
dated against the list. The list may also be shown, e.g., as at
506. The methodology of the present disclosure may prevent
execution of commands in the black list or not in the white
list, e.g., as shown at 504.

FIG. 6 is a class diagram showing role-specific control lists
for controlling authorized users in executing commands in
one embodiment of the present disclosure. In one embodi-
ment of the present disclosure, a role-specific control list
restricts commands (or another executable object) to autho-
rized users. For example, a role or roles of a user may be
defined such as system administrator, database administrator,
level-1 support, and others. For each role, a black list or a
white list containing commands or the like that the role may
notor may execute may be defined or generated. For instance,
the black list would contain a list of commands (or another
like executable) that the associated role may not execute; a
white list would contain a list of commands (or another like
executable) that the associated role may execute. If using a
white list then any command in the white list is allowed and
any command not in the white list is forbidden. If using a
black list, then any command in the black list is forbidden and
any command not in the black list is allowed.

User-entered commands may be validated based on the list
corresponding to user role. In one embodiment, multi-ten-
ancy through account-specific white or black lists may be
enabled. Referring to FIG. 6, account element 602 identifies
a customer for whom the servers are being managed. An
operator element 604 identifies a System Administrator or the
like who is authorized to work on an account. One or more
operators may be assigned to work on an account, but in one

10

15

20

25

30

35

40

45

50

55

60

65

8

embodiment each operator can work on only one account. A
role element 606 is the name of a role for which the operator
is authorized. Each role has permission to perform certain
action types. An action type element 608 is an abstract class
that has one of the subclass types: fixlet element 610, script
element 612, or command element 614. The action types
authorized for each role may be restricted based on the pref-
erences of each account. The fixlet element 610 represents a
code object that conforms to the distributed server manage-
ment framework specifications, and that can therefore be
executed directly by the framework. For example, IBM®
Tivoli Endpoint Manager specifies how to create fixlets that
can be executed by the Tivoli Endpoint Manager framework.
The script element 612 represents an operating system or
shell script that can be directly executed on a command line of
a target computer of the corresponding platform. The com-
mand element 614 represents an operating system or shell
command of a computer platform. Referring to the class
diagram of FIG. 6, the control lists comprise lists of Action
Types (fixlets, scripts, and/or commands). Each control list
can be associated with one or more Roles, and can be
restricted for each Account. The Operators assigned to an
Account are authorized to perform those Action Types for
which they have a required Role. Not shown in the diagram is
an association of Computers to Accounts, which governs the
possible target computers for the operator’s actions.

FIG. 7 is a flow diagram illustrating assigning a role based
on service request. At 702, a user may log on to a workstation
console and enter a service request ticket ID. At 704, the
console connects to a script execution server, which connects
to a ticketing system, which returns the details of the service
request, such as the service request type, the account, and the
target computers. At 706, the script execution manager looks
up the roles associated with the service request type and
grants these role(s) to the operator. At 708, the script execu-
tion manager also looks up the platform of each target com-
puter and either applies the translation feature or prompts the
operator to select one platform at a time. At 710, a privilege
manager or the like functionality retrieves a command white
list for the user’s role and selected platform (if any).

FIG. 8 is a flow diagram illustrating a method of controlled
distribution and execution of commands in another embodi-
ment of the present disclosure. At 802, a user logs into the
script execution console and the console connects to a script
execution server, which looks up user’s pre-assigned role. A
privilege manager retrieves a command white list for user’s
role. At 806, the use enters a command or script (or another
executable object), e.g., via a GUI. At 808, the script execu-
tion server checks the user-selected executable object (e.g., a
command or script) against the white list. For example, it is
determined at 808 whether the selected executable object is
on the list of approved scripts, and if not at 812 whether the
selected executable object is an allowed command according
to the white list. If it is a disallowed command, the console
shows an alert at 814. On the other hand, if the command is an
allowed command according to, at 816, the user may select
one or more target manager server (one or more managed
computers).

At 818, the command is sent to the selected one or more
managed computers, and the logic of the method proceeds to
832. For example, the command is sent to the script/command
execution agent on each endpoint, and executed.

At 810, if it is determined whether the entered script has a
parameter file. This may be determined, e.g., by checking a
configuration file that contains the name of each script and the
name of the corresponding parameter file (if any). Parameter
file may contain input parameters or the like for executing the

US 9,135,056 B2

9

script. If so, at 824, the console presents the operator with an
input window for each parameter pre-populated with a default
value. At 826, the user may select one or more target end-
points (one or more managed computers or servers). At 828,
the user customizes the parameters, and the customized
parameters are sent to the selected target endpoints. At 830,
the one or more selected target endpoints download the
entered script and execute it.

At 820, if the entered script does not have a parameter file,
the user is enabled to select one or more target endpoints. At
822, the one or more selected target endpoints download the
entered script and execute it.

At 832, output of the executable object (e.g., entered com-
mand or script) may be saved in local log file on each targeted
managed server. At 834, logs or other results are collated in
the console for presentation to user.

In one embodiment of the present disclosure, summariza-
tion of results and/or special execution-conditions may be
presented by integration of output from all servers or com-
puters that are managed. The methodology of the present
disclosure may provide improved usability, for example, in
that a user may detect error condition with less effort, thus
providing for smaller likelihood to miss abnormal erroneous
execution that can cause subsequent errors. One embodiment
of the present disclosure may provide for an automated gen-
eration of reports that integrate across individual server
executions. Output methods that are introduced in the script
itself may not be able to separate error message from (valid/
result) content. Such output methods in the script also may
not be able to integrate across multiple servers, such as mul-
tiple servers on which a Web application archive (WAR) is
deployed in a Web application server (WAS) cluster.

In one embodiment of the present disclosure, at script
selection/input time, a user has the option to identify one or
more output processing options. For instance, one output
processing option is to summarize output results in a report to
be forwarded to the customer, and another option is to extract
relevant warning and error messages to ensure the user is
made aware of relevant error conditions.

In one embodiment of the present disclosure, the output
processing method is specified by a script or command (e.g.,
awk command line, cshell script with sequence of text pro-
cessing commands such as sort and awk) capable of receiving
input from stdin and write to stdout. The method can be
bundled with the command script, can be selected from a
library attached to the graphical user interface (GUI), or can
be loaded specifically by the user. At execution time, the GUI
in one embodiment of the present disclosure presents the
“raw” (unprocessed) output as per the specific conditions
selected by the user (e.g., separated by server or merged in
order of arrival at GUI server). The GUI also may present the
result of each output processing options.

In one embodiment of the present disclosure, at completion
time, the user has the option to view the complete result of the
output processing option, and send to one or more outlets,
store in dedicated file, email, append to existing file. The
methodology of the present disclosure in one embodiment
may reduce the cost of administering servers.

The one or more components of the present disclosure, for
example, shown in FIG. 1, may be implemented on one or
more computer or processing systems. Such computer or
processing system may be operational with numerous other
general purpose or special purpose computing system envi-
ronments or configurations. Examples of well-known com-
puting systems, environments, and/or configurations that
may be suitable for use with the methodology of the present
disclosure may include, but are not limited to, personal com-

5

10

20

25

30

35

40

45

55

60

65

10

puter systems, server computer systems, thin clients, thick
clients, handheld or laptop devices, multiprocessor systems,
microprocessor-based systems, set top boxes, programmable
consumer electronics, network PCs, minicomputer systems,
mainframe computer systems, and distributed cloud comput-
ing environments that include any of the above systems or
devices, and the like.

The computer system may be described in the general
context of computer system executable instructions, such as
program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. The computer system may be practiced in distributed
cloud computing environments where tasks are performed by
remote processing devices that are linked through a commu-
nications network. In a distributed cloud computing environ-
ment, program modules may be located in both local and
remote computer system storage media including memory
storage devices.

The components of computer system may include, but are
not limited to, one or more processors or processing units, a
system memory, and a bus that couples various system com-
ponents including system memory to processor. The proces-
sor may include one or more controlled distribution and com-
mand execution components that perform the methods
described herein. The module may be programmed into the
integrated circuits of the processor, or loaded from memory,
storage device, or network or combinations thereof.

Bus may represent one or more of any of several types of
bus structures, including a memory bus or memory controller,
aperipheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system may include a variety of computer sys-
tem readable media. Such media may be any available media
that is accessible by computer system, and it may include both
volatile and non-volatile media, removable and non-remov-
able media.

System memory can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) and/or cache memory or others. Computer
system may further include other removable/non-removable,
volatile/non-volatile computer system storage media. By way
of' example only, storage system can be provided for reading
from and writing to a non-removable, non-volatile magnetic
media (e.g., a “hard drive”). Although not shown, a magnetic
disk drive for reading from and writing to a removable, non-
volatile magnetic disk (e.g., a “floppy disk™), and an optical
disk drive for reading from or writing to a removable, non-
volatile optical disk such as a CD-ROM, DVD-ROM or other
optical media can be provided. In such instances, each can be
connected to bus by one or more data media interfaces.

Computer system may also communicate with one or more
external devices such as a keyboard, a pointing device, a
display, etc.; one or more devices that enable a user to interact
with computer system; and/or any devices (e.g., network
card, modem, etc.) that enable computer system to commu-
nicate with one or more other computing devices. Such com-
munication can occur via Input/Output (I/0) interfaces.

Still yet, computer system can communicate with one or
more networks such as a local area network (LAN), a general
wide area network (WAN), and/or a public network (e.g., the

US 9,135,056 B2

11

Internet) via network adapter. As depicted, network adapter
communicates with the other components of computer sys-
tem via bus. It should be understood that although not shown,
other hardware and/or software components could be used in
conjunction with computer system. Examples include, but are
not limited to: microcode, device drivers, redundant process-
ing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages, a scripting language such
as Perl, VBS or similar languages, and/or functional lan-
guages such as Lisp and ML and logic-oriented languages
such as Prolog. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and

20

25

40

45

55

12

partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Aspects of the present invention are described with refer-
ence to flowchart illustrations and/or block diagrams of meth-
ods, apparatus (systems) and computer program products
according to embodiments of the invention. It will be under-
stood that each block of the flowchart illustrations and/or
block diagrams, and combinations of blocks in the flowchart
illustrations and/or block diagrams, can be implemented by
computer program instructions. These computer program
instructions may be provided to a processor of a general
purpose computer, special purpose computer, or other pro-
grammable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of
the computer or other programmable data processing appa-
ratus, create means for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

The computer program product may comprise all the
respective features enabling the implementation of the meth-
odology described herein, and which—when loaded in a
computer system—is able to carry out the methods. Com-
puter program, software program, program, or software, in
the present context means any expression, in any language,
code or notation, of a set of instructions intended to cause a

US 9,135,056 B2

13

system having an information processing capability to per-
form a particular function either directly or after either or both
of the following: (a) conversion to another language, code or
notation; and/or (b) reproduction in a difterent material form.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements, if any, in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

Various aspects of the present disclosure may be embodied
as a program, software, or computer instructions embodied in
a computer or machine usable or readable medium, which
causes the computer or machine to perform the steps of the
method when executed on the computer, processor, and/or
machine. A program storage device readable by a machine,
tangibly embodying a program of instructions executable by
the machine to perform various functionalities and methods
described in the present disclosure is also provided.

The system and method of the present disclosure may be
implemented and run on a general-purpose computer or spe-
cial-purpose computer system. The terms “computer system”
and “computer network™ as may be used in the present appli-
cation may include a variety of combinations of fixed and/or
portable computer hardware, software, peripherals, and stor-
age devices. The computer system may include a plurality of
individual components that are networked or otherwise
linked to perform collaboratively, or may include one or more
stand-alone components. The hardware and software compo-
nents of the computer system of the present application may
include and may be included within fixed and portable
devices such as desktop, laptop, and/or server. A module may
be acomponent of a device, software, program, or system that
implements some “functionality”, which can be embodied as
software, hardware, firmware, electronic circuitry, or etc.

The embodiments described above are illustrative
examples and it should not be construed that the present
invention is limited to these particular embodiments. Thus,
various changes and modifications may be effected by one
skilled in the art without departing from the spirit or scope of
the invention as defined in the appended claims.

We claim:
1. A system of distributed execution of commands and
scripts, comprising:

10

15

25

30

35

40

45

50

55

60

65

14

a script execution manager having access to a library of
executable objects comprising at least one or more of
commands or scripts or combination of commands and
scripts;

a script execution console operable to present a graphical
user interface for selecting an executable object from the
library to execute and for selecting one or more managed
computers, on which to execute the selected executable
object, the script execution console further operable to
present a dynamically updated collation of results from
execution of the selected executable object;

one or more script execution agents operable to run on the
selected respective one or more managed computers and
further operable to communicate with the script execu-
tion manager; and

a hardware processor operable to execute the script execu-
tion manager and the script execution console,

wherein the graphical user interface comprises a command
line field for entering an identifier of the one or more of
commands or scripts, a menu of operating system plat-
forms from which to select, wherein the one or more
managed computers are automatically selected based on
a selection from the menu of operating system plat-
forms, and a results window that presents the dynami-
cally updated collation of results, the command line
field, the menu of operating system platforms, and the
results window presented in one screen,

the script execution manager further operable to assign a
temporary role for determining which list of executable
objects to use to validate the selected executable object.

2. The system of claim 1, wherein the script execution
console is further operable to automatically map the selected
executable object into a platform specific executable object
compatible to execute on the selected one or more managed
computers.

3. The system of claim 2, further comprising a translation
engine operable to translate the selected executable object
into the platform specific executable object.

4. The system of claim 2, wherein the script execution
agent is further operable to check for existence of the selected
executable object on the selected one or more managed com-
puters, and in response to determining that the selected
executable object exists, the script execution agent is further
operable to compare a digital signature of the executable
object with an approved digital signature associated with the
executable object, and in response to determining that the
digital signature matches with the approved digital signature,
the script execution agent is further operable to execute the
selected executable object, and in response to determining
that the digital signature does not match with the approved
digital signature, the script execution agent is further operable
to download a version of the executable object from an
approved server and execute the downloaded version of the
executable object.

5. The system of claim 1, wherein the script execution
console is further operable to validate the selected executable
object against a list of executable objects.

6. The system of claim 1, further comprising a privilege
manager operable to validate the selected executable object
against a list of executable objects specific to a role of a user.

7. The system of claim 1, further comprising a service
request system that contains service request information
accessed by the script execution manager to assign the tem-
porary role.

8. The system of claim 7, wherein the list of executable
objects for each service request type is automatically gener-

US 9,135,056 B2

15

ated by analyzing prior service requests of said each service
type and collecting the executable objects used to complete
said prior service requests.

9. The system of claim 1, wherein the executable object is
a script.

10. The system of claim 1, wherein the executable object is
a command.

11. A non-transitory computer readable storage medium
storing a program of instructions executable by a machine to
perform a method of distributed execution of commands and
scripts, comprising:

receiving a selected executable object via a graphical user

interface from a user;

receiving via the graphical user interface, a selected one or

more managed computers on which to execute the
selected executable object;

determining whether the user is authorized to execute the

selected executable object on the selected one or more
managed computers;
in response to determining that the user is authorized to
execute the selected executable object, communicating
to the selected one or more managed computers to
execute the executable object and dynamically collating
results from the execution of the executable object on all
of the selected one or more managed computers; and

in response to determining that the user is not authorized to
execute the selected executable object, presenting an
alert to the user via the graphical user interface,

wherein the graphical user interface presents at least a

command line field for entering an identifier of the
selected executable object, a menu of operating system
platforms from which to select, wherein the one or more
managed computers are automatically selected based on
a selection from the menu of operating system plat-
forms, and a results window that presents the dynami-
cally collated results, the command line field, the menu
of operating system platforms, and the results window
presented in one screen,

the method further comprising assigning a temporary role

to the user, the temporary role determining which list of
executable objects to use to validate the selected execut-
able object.

12. The computer readable storage medium of claim 11,
further comprising:

in response to determining that the user is authorized to

execute the selected executable object, checking for
existence of the selected executable object on the
selected one or more managed computers, and in
response to determining that the selected executable
object exists, comparing a digital signature of the
executable object with an approved digital signature
associated with the executable object, and in response to
determining that the digital signature matches with the
approved digital signature, executing the selected
executable object, and in response to determining that
the digital signature does not match with the approved
digital signature, downloading a version of the execut-
able object from an approved server and executing the
downloaded version of the executable object.

13. The computer readable storage medium of claim 11,
further comprising:

automatically mapping the selected executable object into

a platform specific executable object compatible to
execute on the selected one or more managed comput-
ers.

14. The computer readable storage medium of claim 11,
wherein the determining of whether the user is authorized to

10

15

20

25

30

35

40

45

50

55

60

65

16

execute the selected executable object on the selected one or
more managed computers comprises checking a control list
containing allowable executable objects specific to a user
role.

15. The computer readable storage medium of claim 11,
wherein the determining of whether the user is authorized to
execute the selected executable object on the selected one or
more managed computers comprises checking a list contain-
ing executable objects said user is disallowed from executing.

16. The computer readable storage medium of claim 11,
wherein the executable object is a script.

17. The computer readable storage medium of claim 11,
wherein the executable object is a command.

18. The computer readable storage medium of claim 11,
further comprising presenting via the graphical user interface
the dynamically collated results.

19. A non-transitory computer readable storage medium
storing a program of instructions executable by a machine to
perform a method of distributed execution of commands and
scripts, the method comprising:

receiving a selected executable object via a graphical user

interface from a user;

receiving via the graphical user interface, a selected one or

more managed computers on which to execute the
selected executable object;

determining whether the user is authorized to execute the

selected executable object on the selected one or more
managed computers;

in response to determining that the user is authorized to

execute the selected executable object, determining
whether the selected executable object has a parameter
file and in response to determining that the selected
executable object has a parameter file, allowing a user to
customize the parameter file, and communicating to the
selected one or more managed computers to execute the
executable object with the customized parameter file,
and dynamically collating results from the execution of
the executable object on all of the selected one or more
managed computers; and

inresponse to determining that the user is not authorized to

execute the selected executable object, presenting an
alert to the user via the graphical user interface,

wherein the graphical user interface presents at least a

command line field for entering an identifier of the
selected executable object, a menu of operating system
platforms from which to select, wherein the one or more
managed computers are automatically selected based on
a selection from the menu of operating system plat-
forms, and a results window that presents the dynami-
cally collated results, the command line field, the menu
of operating system platforms, and the results window
presented in one screen,

the method further comprising assigning a temporary role

to the user, the temporary role determining which list of
executable objects to use to validate the selected execut-
able object.

20. The computer readable storage medium of claim 19,
further comprising:

in response to determining that the user is authorized to

execute the selected executable object, checking for
existence of the selected executable object on the
selected one or more managed computers, and in
response to determining that the selected executable
object exists, comparing a digital signature of the
executable object with an approved digital signature
associated with the executable object, and in response to
determining that the digital signature matches with the

US 9,135,056 B2

17

approved digital signature, executing the selected
executable object, and in response to determining that
the digital signature does not match with the approved
digital signature, downloading a version of the execut-
able object from an approved server and executing the
downloaded version of the executable object.

21. The computer readable storage medium of claim 19,
further comprising:

automatically mapping the selected executable object into

a platform specific executable object compatible to
execute on the selected one or more managed comput-
ers.

22. The computer readable storage medium of claim 19,
wherein the determining of whether the user is authorized to
execute the selected executable object on the selected one or
more managed computers comprises checking a control list
containing allowable executable objects specific to a user
role.

10

15

18

